Sagittal Realignment Goals
Should Be Set to Ideal Proportionate Shape and Alignment
Independent of Age

Caglar Yilgor
Nuray Söğünmez
Yasemin Yavuz
Ibrahim Obeid

Frank S. Kleinstueck
Francisco Javier Sanchez Perez Grueso
Emre R. Acaroğlu
Anne F. Mannion

Ferran Pellisé
Ahmet Alanay
ESSG- European Spine Study Group

COMPREHENSIVE SPINE CENTER
ACIBADEM MASLAK
Background: Sagittal Plane Analysis

- **SRS-Schwab Classification – Sagittal Modifiers**
 - Pelvic Tilt
 - 0: PT<20°
 - +: PT 20-30°
 - ++: PT>30°
 - PI minus LL
 - 0: within 10°
 - +: moderate 10-20°
 - ++: marked >20°
 - Global Alignment
 - 0: SVA < 4cm
 - +: SVA 4 to 9.5cm
 - ++: SVA > 9.5cm

- Have been used as alignment targets but addressing these does not always prevent mechanical complications

- Mechanical complication rate 31.7%
- 52.6% of them revised!

- **Disadvantages of Schwab Parameters**
 - Based on HRQoL parameters, not mechanical complications
 - Do not include
 - Anteversion
 - Negative Malalignment
 - Shape and distribution of lumbar lordosis
 - Considering the whole spectrum of PI
 - when used as an absolute numeric value
 - in conjunction with previously reported
 - population-based average thresholds
 - Schwab criteria may be insufficient or misleading in quantifying
 - Normversion of pelvis (PT)
 - Spinopelvic mismatch (PI-LL)
Adult Spinal Deformity Surgery

- Spinopelvic alignment is known to vary for age
 - Age-adjusted alignment objectives concept
 - Less rigorous correction in elderly

 Defining Spino-Pelvic Alignment Thresholds
 Should Operative Goals in Adult Spinal Deformity Surgery Account for Age?

 Age-Adjusted Alignment Goals Have the Potential to Reduce PJK

 Based on patient-reported outcomes
 Biomechanics & mechanical complications not considered

- Simplified formula for age-adjusted thresholds
 - \(PT = \frac{(Age-55)}{3} + 20 \)
 - \(PI-LL = \frac{(Age-55)}{2} + 3 \)
 - \(SVA = 2\times(Age-55) + 25 \)

 Thresholds for over and undercorrection
 - patient age +/- 10 years

 SRS 2016, Prague, #117
 Under-Correction of Sagittal Deformities Based on Age-Adjusted Alignment Thresholds Leads to Worse HRQOL While Over-Correction Provides No Additional Benefit
Failure to Validate the Age-Adjusted Alignment Thresholds Concept in an Adult Spinal Deformity Database

- Mechanical complication rates were similar for:
 - PT matched and undercorrected (p>0.05)
 - PI-LL matched and overcorrected (p>0.05)
 - all age-adjusted groups in SVA (p>0.05)

- Reaching age-adjusted Schwab realignment goals:
 - in ESSG database
 - failed to improve, if not worsened,
 - clinical outcomes and
 - to prevent mechanical complications

<table>
<thead>
<tr>
<th>Categories</th>
<th>n</th>
<th>% of Mechanical Complication</th>
<th>n</th>
<th>% of Mechanical Complication</th>
<th>n</th>
<th>% of Mechanical Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched</td>
<td>27/71</td>
<td>38.0 %</td>
<td>18/59</td>
<td>30.5 %</td>
<td>30/72</td>
<td>41.7 %</td>
</tr>
<tr>
<td>Over Correction</td>
<td>50/89</td>
<td>56.2 %</td>
<td>31/78</td>
<td>39.7 %</td>
<td>33/63</td>
<td>52.4 %</td>
</tr>
<tr>
<td>Under Correction</td>
<td>23/62</td>
<td>37.1 %</td>
<td>51/85</td>
<td>60.0 %</td>
<td>31/64</td>
<td>48.4 %</td>
</tr>
<tr>
<td>Total</td>
<td>100/222</td>
<td>45.0 %</td>
<td>100/222</td>
<td>45.0 %</td>
<td>94/199</td>
<td>47.2 %</td>
</tr>
</tbody>
</table>

p¥<0.05**<0.01**>0.05*
Global Alignment & Proportion: **GAP Score**

- New Method of Analyzing Sagittal Plane
- Offers *individualized* sagittal plane analysis
 - Instead of population norms & mean values
- Uses **PI-based** proportional radiographic parameters
 - Instead of absolute numerical values
- Denotes “normal” and “pathologic”
 - standing sagittal alignment and shape
 - as a single score for *every magnitude of* pelvic incidence.

- Radiographic parameters
 - **RPV**: Relative Pelvic Version (Measured-Ideal SS)
 - **RLL**: Relative Lumbar Lordosis (Measured-Ideal LL)
 - **LDI**: Lordosis Distribution Index (L4-S1 / L1 – S1)
 - **RSA**: Relative Spinopelvic Alignment (Measured-Ideal GT)
- **Age** Factor
The GAP score, calculated by adding the scores for relative pelvic version, relative lumbar lordosis, lordosis distribution index, relative spinopelvic alignment, and the age factor, ranged from 0 to 13 points.

A GAP score of 0 to 2 was categorized as indicating a proportioned spinopelvic state; 3 to 6, as moderately disproportioned; and ≥7, as severely disproportioned.
Global Alignment and Proportion (GAP) Score Better Correlates to HRQoL Scores and Better Predicts Mechanical Complications Compared to SRS-Schwab Sagittal Modifiers

• Individualized PI-based analysis with GAP Score better predicted mechanical complications compared to Schwab modifiers, which uses absolute values in conjunction with previously reported population-based average thresholds

• GAP Score had better partial correlation coefficients to HRQoL scores

• when compared to PT, PI-LL and SVA (p<0.01)

Performance of the models

<table>
<thead>
<tr>
<th>Significance of the model</th>
<th>Model I with GAP score</th>
<th>Model II with PI-LL</th>
<th>Model III with PT</th>
<th>Model IV with SVA</th>
<th>Model IV with PI-LL, PT, SVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC</td>
<td>79.7</td>
<td>64</td>
<td>68.9</td>
<td>62.8</td>
<td>70.4</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>62</td>
<td>29.9</td>
<td>73</td>
<td>41.5</td>
<td>52.1</td>
</tr>
<tr>
<td>Specificity</td>
<td>94.3</td>
<td>92.6</td>
<td>65.6</td>
<td>81.9</td>
<td>86.7</td>
</tr>
<tr>
<td>PPV</td>
<td>89.9</td>
<td>76.3</td>
<td>63.5</td>
<td>67.2</td>
<td>77.8</td>
</tr>
<tr>
<td>NPV</td>
<td>75.2</td>
<td>61.4</td>
<td>74.8</td>
<td>60.9</td>
<td>66.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discrimination</th>
<th>Model I with GAP score</th>
<th>Model II with PI-LL</th>
<th>Model III with PT</th>
<th>Model IV with SVA</th>
<th>Model IV with PI-LL, PT, SVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Complication Present</td>
<td>%00</td>
<td>%00</td>
<td>%00</td>
<td>%00</td>
<td>%00</td>
</tr>
</tbody>
</table>

GAP Score had better partial correlation coefficients to HRQoL scores when compared to PT, PI-LL and SVA (p<0.01)
Aim

• Similar to Schwab modifiers
 – normative data studies showed that
 – GAP categories change with age

• Aim of the study is to analyze
 – the effect of age
 – on mechanical complications
 – in patients reaching different post-op GAP categories

Methods

• From the ESSG database
 – ≥4 levels posterior fusion
 – ≥2 years follow up
 – 222 patients (168F, 54M) were included
 – Mean age : 52.2 ± 19.3 (range 18-84)
 – Mean follow-up : 28.8 ± 8.2 (24-62) months

• Mechanical Complications
 – PJK / PJF
 – DJK
 – Rod breakage
 – Implant related complications
 • Screw loosening, fracture, pull out
 • Interbody, hook or set screw pull out

• Mechanical complication rates
 – for different age groups and
 – for post-op GAP categories
 – were compared using Chi Squared test
Results

• Analysis of the whole cohort without dividing into GAP categories – showed that mechanical complication rates were higher (p<0.001) in older age groups

• Distribution of patients that were GAP-P, GAP-MD and GAP-SD
• was different in age groups reflecting a tendency towards non-ideal correction with aging
Results

• For all age groups
 – disproportioned categories resulted with more mechanical complications (p<0.001)

• Mechanical complication rates
 – for each GAP category did not change according to age groups (p>0.05)
Conclusion

• Age-adjusted realignment goals towards less rigorous correction
 – will increase mechanical complication rates in elderly patients

• Achieving a non-ideal correction in adult spinal deformity patients
 – resulted in more mechanical complications for all ages

• Achieving individualized proportionate global sagittal alignment (GAP-P)
 – decreased mechanical complication rates for all age groups

• To prevent mechanical complications
 – Sagittal realignment goals should be set to individualized proportionate shape and alignment
 – independent of age
Disclosures

- Caglar Yilgor: None
- Nuray Sogunmez: Grants/Research Support: DePuy Synthes
- Yasemin Yavuz: None
- Ibrahim Obeid: Grants/research support: DePuy Synthes
 Consultant: DePuy Synthes, Medtronic
 Royalties: Alphatec, Spineart
- Frank Kleinstück: Grants/Research Support: DePuy Synthes
 Speaker’s Bureau: DePuy Synthes
- FJS Pérez-Grueso: Grants/research support: DePuy Synthes
 Consultant: DePuy Synthes
- Emre Acaroglu: Grants /Research Support: DePuy Synthes, Medtronic, Stryker Spine
 Speaker’s Bureau: AO Spine, Medtronic, Stryker Spine, Zimmer Biomet
 Advisory Board or Panel: AO Spine
 Stock/Shareholder: IncredX (self-managed)
- Ferran Pellise: Grants/research support: DePuy Synthes, K2M, Medtronic
 Consultant: DePuy Synthes, Zimmer Biomet
- Ahmet Alanay: Grants/research support: DePuy Synthes
 Consultant: DePuy Synthes, Stryker Spine, Medtronic
- ESSG: Grants/research support: DePuy Synthes