Global Alignment and Proportion (GAP) Score Better Correlates to HRQoL Scores and Better Predicts Mechanical Complications Compared to SRS-Schwab Sagittal Modifiers

Caglar Yilgor
Nuray Söğünmez
Yasemin Yavuz
Ibrahim Obeid

Frank S. Kleinstueck
Francisco Javier Sanchez Perez Grueso
Emre R. Acaroğlu
Anne F. Mannion

Ferran Pellisé
Ahmet Alanay
ESSG- European Spine Study Group
Background: Sagittal Plane Analysis

• SRS-Schwab Classification – Sagittal Modifiers
 – Have been used as alignment targets but addressing these
 – do not always prevent mechanical complications
 • Mechanical complication rate 31.7%
 • 52.6% of them revised!

• Disadvantages of Schwab Parameters
 – Based on HRQoL parameters, not mechanical complications
 – Do not include
 • Anteversion
 • Negative Malalignment
 • Shape and distribution of lumbar lordosis
 – Considering the whole spectrum of PI
 • when used as an absolute numeric value
 • in conjunction with previously reported
 • population-based average thresholds
 • Schwab criteria may be insufficient or misleading in quantifying
 • Normoverversion of pelvis (PT)
 • Spinopelvic mismatch (PI-LL)

• There is a need for a new look into the ‘ideal’ sagittal plane

• Spinal curvatures and alignment must be viewed in light of each other
 – Chain of correlations
 • PI influences SS
 • SS influences LL
 • LL influences TK
 • TK influences CL

• Pelvic incidence
 – is a (relatively) constant morphological parameter
 – that describes the ‘pelvic size’ for any given person

• PI = A signature

• All sagittal plane parameters
 – Should be evaluated proportional to PI
 – rather than absolute numeric
 – to assess disproportion compared with the calculated ideal
Global Alignment & Proportion: GAP Score
- New Method of Analyzing Sagittal Plane
- Offers individualized sagittal plane analysis
 - Instead of population norms & mean values
- Uses PI-based proportional radiographic parameters
 - Instead of absolute numerical values
- Denotes “normal” and “pathologic”
 - standing sagittal alignment and shape
 - as a single score for every magnitude of pelvic incidence.

Radiographic parameters
- **RPV**: Relative Pelvic Version (Measured-Ideal SS)
- **RLL**: Relative Lumbar Lordosis (Measured-Ideal LL)
- **LDI**: Lordosis Distribution Index (L4-S1 / L1 – S1)
- **RSA**: Relative Spinopelvic Alignment (Measured-Ideal GT)
- **Age Factor**
The GAP score, calculated by adding the scores for relative pelvic version, relative lumbar lordosis, lordosis distribution index, relative spinopelvic alignment, and the age factor, ranged from 0 to 13 points.

A GAP score of 0 to 2 was categorized as indicating a proportioned spinopelvic state; 3 to 6, as moderately disproportioned; and ≥7, as severely disproportioned.
Aim

- To compare GAP Score and Schwab modifiers
 - in prediction of mechanical complications and
 - Correlations to HRQoL Scores

Methods

- From the ESSG database
 - ≥4 levels posterior fusion
 - ≥2 years follow up
 - 222 patients (168F, 54M)
 - Mean age
 - 52.2 ± 19.3 (range 18-84)
 - Mean follow-up:
 - 28.8 ± 8.2 (24-62) months

- Mechanical Complications
 - PJK / PJF
 - DJK
 - Rod breakage
 - Implant related complications
 - Screw
 - loosening, fracture, pull out
 - Interbody, hook or set screw
 - pull out

- Correlations between Schwab modifiers and GAP Score with
 - ODI, COMI, SRS-22 and SF-36
 - Pearson’s Partial Correlation Coefficient

- The distribution of Schwab modifiers and GAP categories in patients
 - with / without mechanical complications
 - compared using McNemar-Bowker test

- Uni- & Multivariate logistic regression analysis
 - To compare prediction ability for mechanical complications
Results

• GAP Score had better
 – partial correlation coefficients
 – to HRQoL scores

• when compared to
 – PT, PI-LL and SVA (p<0.01)
Results

- In 122 patients that did not have:
 - mechanical complications
 - the distribution of Schwab modifiers
 - and GAP categories were similar (p>0.05).

- In 100 patients that had:
 - mechanical complications
 - GAP had a better prediction
 - with an increasing trend of complications
 - as the category worsens (p<0.001)

<table>
<thead>
<tr>
<th>122 Patients – Mechanical Complications ABSENT</th>
<th>100 Patients – Mechanical Complication PRESENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwab</td>
<td>PI LL</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Categories</td>
<td>n (%)</td>
</tr>
<tr>
<td>0</td>
<td>77 (63.1%)</td>
</tr>
<tr>
<td>+</td>
<td>36 (29.5%)</td>
</tr>
<tr>
<td>++</td>
<td>9 (7.4%)</td>
</tr>
</tbody>
</table>
Prediction of Mechanical Complications

<table>
<thead>
<tr>
<th>Performance of the models</th>
<th>Model I with GAP score</th>
<th>Model II with PI-LL</th>
<th>Model III with PT</th>
<th>Model IV with SVA</th>
<th>Model IV with PI-LL, PT, SVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance of the model</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Nagelkerke R^2</td>
<td>.597</td>
<td>.108</td>
<td>.248</td>
<td>.122</td>
<td>.329</td>
</tr>
<tr>
<td>Discrimination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC</td>
<td>79.7</td>
<td>64</td>
<td>68.9</td>
<td>62.8</td>
<td>70.4</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>62</td>
<td>29.9</td>
<td>73</td>
<td>41.5</td>
<td>52.1</td>
</tr>
<tr>
<td>Specificity</td>
<td>94.3</td>
<td>92.6</td>
<td>65.6</td>
<td>81.9</td>
<td>86.7</td>
</tr>
<tr>
<td>PPV</td>
<td>89.9</td>
<td>76.3</td>
<td>63.5</td>
<td>67.2</td>
<td>77.8</td>
</tr>
<tr>
<td>NPV</td>
<td>75.2</td>
<td>61.4</td>
<td>74.8</td>
<td>60.9</td>
<td>66.9</td>
</tr>
</tbody>
</table>

PAC; Percentage Accuracy in Classification; PPV; Positive Predictive Value, NPV; Negative Predictive Value
<table>
<thead>
<tr>
<th>Pelvic Incidence</th>
<th>Age Factor</th>
<th>PI(=79^\circ)</th>
<th>GAP Score</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvic Proportion</td>
<td>Aligned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacral Slope</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal Sacral Slope</td>
<td>55.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvic Proportion</td>
<td>Aligned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1-S1 Lordosis</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal Lordosis</td>
<td>77.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lordosis Proportion</td>
<td>Aligned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4-S1 Lordosis</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lordosis Proportion</td>
<td>Aligned</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Tilt</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ideal Global Tilt</td>
<td>22.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spino-Pelvic Proportion</td>
<td>Aligned</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age Adjustment:
- PT ‘++’ = 30
- PI-LL ‘++’ = 13
- SVA ‘0’ = -2.3 cm
- PT under
- PI-LL under
- SVA over

No Mechanical complications
<table>
<thead>
<tr>
<th>Pelvic Incidence</th>
<th>GAP Score</th>
<th>Severe Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 26</td>
<td>13</td>
<td>Severe Disproportion</td>
</tr>
<tr>
<td>Age Factor 60</td>
<td>1</td>
<td>Relative Pelvic Version -15.3</td>
</tr>
<tr>
<td>Sacral Slope 9</td>
<td></td>
<td>Relative Lumbar Lordosis -28.1</td>
</tr>
<tr>
<td>Ideal Sacral Slope 24.34</td>
<td></td>
<td>Lordosis Distribution Index 118%</td>
</tr>
<tr>
<td>Pelvic Proportion</td>
<td>Severe Retroversion 3</td>
<td></td>
</tr>
<tr>
<td>L1-S1 Lordosis 17</td>
<td></td>
<td>Relative Sagittal Alignment 20.52</td>
</tr>
<tr>
<td>Ideal Lordosis 45.12</td>
<td></td>
<td>Spino-Pelvic Proportion Severe Positive Alignment 3</td>
</tr>
<tr>
<td>Lordosis Proportion</td>
<td>Severe Hypolordosis 3</td>
<td></td>
</tr>
<tr>
<td>L4-S1 Lordosis 20</td>
<td></td>
<td>Global Tilt 18</td>
</tr>
<tr>
<td>Lordosis Distribution Proportion</td>
<td>Hyperlordotic Maldistribution 3</td>
<td></td>
</tr>
<tr>
<td>Spino-Lumbar Tilt 18</td>
<td></td>
<td>Ideal Global Tilt -2.52</td>
</tr>
<tr>
<td>Global Tilt 18</td>
<td></td>
<td>Relative Sagittal Alignment 20.52</td>
</tr>
<tr>
<td>Spino-Pelvic Proportion</td>
<td>Severe Positive Alignment 3</td>
<td></td>
</tr>
</tbody>
</table>

Age Adjustment
- PT ‘0’ = 19
- PI-LL ‘++’ = 24
- SVA ‘+’ = 5.4 cm

Rod Breakage

Pre-op 6w 2y PJK & Rod Breakage
Conclusion

• GAP score
 – is a new PI-based proportional method of analyzing
 – the individualized sagittal plane

• GAP score
 – compared to Schwab modifiers, which uses average absolute value thresholds
 – better correlates to HRQoL scores and
 – better predicts mechanical complications

• Preoperative planning & setting surgical goals in the sagittal plane
 – on the basis of the proportional indices reflected by the GAP score
 – may decrease the rate of mechanical complications.
Disclosures

- Caglar Yilgor: None
- Nuray Soganmez: Grants/Research Support: DePuy Synthes
- Yasemin Yavuz: None
- Ibrahim Obeid: Grants/research support: DePuy Synthes, Consultant: DePuy Synthes, Medtronic, Royalties: Alphatec, Spineart
- Frank Kleinstück: Grants/Research Support: DePuy Synthes, Speaker’s Bureau: DePuy Synthes
- FJS Pérez-Grueso: Grants/research support: DePuy Synthes, Consultant: DePuy Synthes
- Ferran Pellise: Grants/research support: DePuy Synthes, K2M, Medtronic, Consultant: DePuy Synthes, Zimmer Biomet
- Ahmet Alanay: Grants/research support: DePuy Synthes, Consultant: DePuy Synthes, Stryker Spine, Medtronic
- ESSG: Grants/research support: DePuy Synthes