Comparison of Decompression with Interlaminar Stabilization vs. Decompression with in Patients Requiring 2 Levels of Surgical Treatment for Spinal Stenosis

Rachel Simon, Christina Dowe, Samuel Grinberg, Frank P. Cammisa, Jr., M.D., Celeste Abjornson, Ph.D.

Integrated Spine Research Program
Hospital for Special Surgery
New York, NY, USA
Background

Current Accepted Treatment Options for Lumbar Spinal Stenosis

Non-Surgical Conservative Care
- Epidural Steroid Injections
- Pain medications
- Physical Therapy

Symptoms persist >12 weeks\(^1\)

Surgical Treatment Options
- Decompression Alone
- Decompression with Fusion

Studies have looked at surgical treatment options in general cohorts of stenosis patients, but have not specifically examined the longevity of multi-level surgical treatments

\(^1\)Weinstein, *NEJM*, 2008
Interlaminar stabilization (ILS)

- Hypothesis: ILS is a viable alternative to decompression with fusion for treating two levels of spinal stenosis
 - Example: coflex® (Paradigm Spine, NY, NY) ILS device achieved FDA PMA approval, for up to a Grade I spondylolisthesis, in 2012
 - U-shaped device, fixed between lamina after decompression
 - Goals:
 - Unload facet joints
 - Stabilize the motion segment
 - Maintain the neurological decompression & foraminal height
 - Preserve some motion

Until now, the two-level experience of ILS compared to instrumented fusion has not yet been formally analyzed or described
Methods: Patient Population

Enrollment

Total patients enrolled/randomized: n = 322

- Single Level
 - Patients requiring treatment at single level: n = 206
 - ILS
 - Patients who received ILS: n = 77
 - Fusion
 - Patients who received fusion: n = 39

- Two Levels
 - Patients requiring treatment at 2 levels: n = 116
 - Month 60 CCS
 - Total patients analyzed for CCS: n = 69
 - Patients excluded from analysis: n = 8
 - Total patients analyzed for CCS: n = 33
 - Patients excluded from analysis: n = 6

88% 5 year follow up
Results: Composite Clinical Success

Month 60 Overall Efficacy: Two Level Procedures

<table>
<thead>
<tr>
<th>Status pre-op compared with Month 60</th>
<th>Decompression + ILS</th>
<th>Decompression + fusion</th>
<th>p-value<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement of ≥15 points in ODI at Month 60 compared to baseline</td>
<td>86.7%</td>
<td>92.9%</td>
<td>0.532</td>
</tr>
<tr>
<td>No reoperation or epidural steroid injection (Up to Day 1825)</td>
<td>68.8%</td>
<td>51.3%</td>
<td>0.065</td>
</tr>
<tr>
<td>No reoperations, revisions, removals, or supplemental fixation</td>
<td>87.0%</td>
<td>74.4%</td>
<td>0.088</td>
</tr>
<tr>
<td>No epidural injection at any lumbar level up to and including the Month 60 visit</td>
<td>80.5%</td>
<td>69.2%</td>
<td>0.174</td>
</tr>
<tr>
<td>No persistent new or increasing sensory or motor deficit at 60 months</td>
<td>96.5%</td>
<td>96.2%</td>
<td>0.939</td>
</tr>
<tr>
<td>No persistent new or increasing sensory deficit</td>
<td>98.3%</td>
<td>100.0%</td>
<td>0.493</td>
</tr>
<tr>
<td>No persistent new or increasing motor deficit</td>
<td>98.2%</td>
<td>96.2%</td>
<td>0.564</td>
</tr>
<tr>
<td>No major device-related complications</td>
<td>97.4%</td>
<td>94.9%</td>
<td>0.480</td>
</tr>
<tr>
<td>Composite Clinical Success (Month 60 CCS-FDA)</td>
<td>55.1%</td>
<td>36.4%</td>
<td>0.077</td>
</tr>
</tbody>
</table>

¹Chi-Square test
Reoperation Categories

<table>
<thead>
<tr>
<th>Reoperation Category</th>
<th>D+ILS (N=77) n (%)</th>
<th>D+Fusion (N=39) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound/surgery related</td>
<td>3 (3.9%)</td>
<td>1 (2.6%)</td>
</tr>
<tr>
<td>Under treatment</td>
<td>2 (2.6%)</td>
<td>2 (5.1%)</td>
</tr>
<tr>
<td>Device related issue</td>
<td>2 (2.6%)</td>
<td>2 (5.1%)</td>
</tr>
<tr>
<td>Device ineffective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Early (≤2 years post-op)</td>
<td>2 (2.6%)</td>
<td>1 (2.6%)</td>
</tr>
<tr>
<td>B. Late (>2 years post-op)</td>
<td>1 (1.3%)</td>
<td>4 (10.3%)</td>
</tr>
<tr>
<td>Trauma</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>10 (13.0%)</td>
<td>10 (25.7%)</td>
</tr>
</tbody>
</table>
Results: ODI

*Significant difference between ILS and fusion groups: two sample pooled t-test p-value = 0.023
† Significant difference between ILS baseline and follow-up: within-group paired t-test
◊ Significant difference between fusion baseline and follow-up: within-group paired t-test
Results: Mean VAS Leg Pain for Most Symptomatic Leg

*Significant difference between ILS and fusion groups: two sample pooled t-test p-value = 0.035
† Significant difference between ILS baseline and follow-up: within-group paired t-test
◊ Significant difference between fusion baseline and follow-up: within-group paired t-test
Conclusions

- This is the first analysis that specifically focuses on the sustainability of two-level fusion vs. ILS treatments.
- At 5 years post-op, patients who received ILS at two levels performed as well, if not better, than patients who received fusion at two levels.
 - As demonstrated by Composite Clinical Success and secondary outcome measures.
- The reoperation rate for fusion patients was twice the rate for ILS patients:
 - 25.7% fusion vs. 13.0% ILS.
- With regard to late-term (>2 years post-op) device sustainability:
 - 10.3% fusion late device ineffective vs. 1.3% of ILS late device ineffective.
- ILS has been found to be a durable and sustainable option for treating two levels of spinal stenosis.
Thank you!
References

Disclosures

Research support was provided by Paradigm Spine, LLC (NY, NY, USA)